Yang Dan, PhD

Professor of Neurobiology and Vision Science

Affiliations

Molecular & Cell Biology; Helen Wills Neuroscience Institute

Research Areas

Visual neurophysiology; Computational neurosciences

Our research aims to elucidate (1) how visual information is encoded and processed in the mammalian brain, and (2) how neural circuits are shaped by visual experience. We use a multidisciplinary approach combining computational analyses and experimental studies at multiple levels, from single neurons and dendrites to animal behavior. Current projects include:

Study of cortical circuits and dynamics in slice. Patch-clamp recording experiments are performed in visual cortical slices to study the interaction between different pathways – feedforward, recurrent, and feedback – in information processing and activity-dependent plasticity. Two-photon Ca2+ imaging allows us to study processing at the dendritic level.

Characterization of neural circuits underlying receptive field properties in vivo. In addition to extracellular recordings, whole-cell (intracellular) recordings are made in the visual cortex in vivo to monitor excitatory and inhibitory synaptic inputs into cortical neurons during visual stimulation and to manipulate the postsynaptic membrane potential. Linear and nonlinear computational techniques are used to analyze the responses to complex stimuli (e.g., white noise, natural scenes) to understand the cortical circuitry underlying various response properties of visual neurons, the effects of neuromodulatory inputs, and the mechanisms underlying experience-dependent receptive field plasticity.

Studying ensemble coding with multielectrode recording and imaging. Activity of multiple neurons will be measured simultaneously with multielectrode recording, two-photon imaging, or voltage-sensitive dye imaging. These experiments will allow us to characterize the spatiotemporal patterns of ensemble neural activity and their roles in visual coding.

Exploring the neural correlate of perception in awake animals. In addition to human psychophysics experiments, we have established a rodent behavioral paradigm for studying visual perception. Multielectrode recording are also made in awake rodents to understand the neural activity patterns underlying perception.

Selected Publications

http://mcb.berkeley.edu/faculty/NEU/dany.html

Contact

230D Li Ka Shing
Berkeley, CA 94720
(510) 643-2833